Regulation of chondrogenesis and chondrocyte differentiation by stress.
نویسندگان
چکیده
Chondrogenesis and endochondral ossification are the cartilage differentiation processes that lead to skeletal formation and growth in the developing vertebrate as well as skeletal repair in the adult. The exquisite regulation of these processes, both in normal development and in pathologic situations, is impacted by a number of different types of stress. These include normal stressors such as mechanical loading and hypoxia as well pathologic stressors such as injury and/or inflammation and environmental toxins. This article provides an overview of the processes of chondrogenesis and endochondral ossification and their control at the molecular level. A summary of the influence of the most well-understood normal and pathologic stressors on the differentiation program is also presented.
منابع مشابه
Transcriptional Network Controlling Endochondral Ossification
Endochondral ossification is the fundamental process of skeletal development in vertebrates. Chondrocytes undergo sequential steps of differentiation, including mesenchymal condensation, proliferation, hypertrophy, and mineralization. These steps, which are required for the morphological and functional changes in differentiating chondrocytes, are strictly regulated by a complex transcriptional ...
متن کاملTransmission of ER stress response by ATF6 promotes endochondral bone growth
BACKGROUND We reported earlier that X-box binding protein1 spliced (XBP1S), a key regulator of the unfolded protein response (UPR), as a bone morphogenetic protein 2 (BMP2)-inducible transcription factor, positively regulates endochondral bone formation by activating granulin-epithelin precursor (GEP) chondrogenic growth factor. Under the stress of misfolded or unfolded proteins in the endoplas...
متن کاملDifferent Roles of GRP78 on Cell Proliferation and Apoptosis in Cartilage Development
Eukaryotic cells possess several mechanisms to adapt to endoplasmic reticulum (ER) stress and thereby survive. ER stress activates a set of signaling pathways collectively termed as the unfolded protein response (UPR). We previously reported that Bone morphogenetic protein 2 (BMP2) mediates mild ER stress and activates UPR signal molecules in chondrogenesis. The mammalian UPR protects the cell ...
متن کاملXBP1S associates with RUNX2 and regulates chondrocyte hypertrophy.
BMP2 (bone morphogenetic protein 2) is known to activate unfolded protein response signaling molecules, including XBP1S and ATF6. However, the influence on XBP1S and ATF6 in BMP2-induced chondrocyte differentiation has not yet been elucidated. In this study, we demonstrate that BMP2 mediates mild endoplasmic reticulum stress-activated ATF6 and directly regulates XBP1S splicing in the course of ...
متن کاملThe effect of high frequency electric field on enhancement of chondrogenesis in human adipose-derived stem cells
Objective(s):Osteoarthritis (OA) is globally one of the most common diseases from the middle age onwards. Cartilage is an avascular tissue therefore it cannot be repaired in the body. Conservative treatments have failed as a good remedy and cell therapy as a decisive cure is needed. One of the best and easily accessible cell sources for this purpose is adipose-derived stem cells which can be di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 118 2 شماره
صفحات -
تاریخ انتشار 2008